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Abstract

The aim of this paper is to present estimates for the rate of pointwise convergence of the
Bézier—Kantorovich modification of the discrete Feller operators in some classes of
measurable functions bounded on an interval 7, in particular, for functions of bounded pth
power variation on I. Our theorems generalize and extend the recent results of Zeng and
Piriou (J. Approx. Theory 95(1998) 369; 104(2000) 330) for the kantorovichians of the
Bernstein—Bézier operators in the class of functions of bounded variation in the Jordan sense
on [0, 1].
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let M(I) be the class of all measurable real-valued functions bounded on an
interval /<10, o). For f'e M(I), the discrete Feller operator is defined by

Lyf(x) = Ef( nv/” Zf ]/np,,] x), (1)

Jjedy

where ne N,xel, {p, j(x): xel, jeJ,} is the distribution of the sum S, , = X; \ +
Xox+ -+ X,y and {Xj,: keN} is a sequence of independent and identically
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distributed random variables with expectation EX) . = x for all ke N and finite
variance ¢2(x) [2, p. 218]. We assume that the weights p, ; are continuous on I and
that the sets J, are of the form J, =Ny = Nu{0} for all neN, or J, =
{0,1,...,m,}, where m,eN and m, <my; for all ne N. As in [9], we introduce the
Bézier basis functions

qni(x) = Z P, j(x) for keld,,
Jjedn, j=k
Gni(x) =0 for all I>m, if J,={0,1,...,m,}, and O (x) = L (x) — @psy (%),
where «>0. The discrete Bézier—type operator L, , related to (1) and its
Kantorovich-type modification L, , are defined by

Luof(x) =Y fk/n)O (x) (2)
keld,
and
L 100 =3 Il o) / or 3)
kEJ,, [n‘k

where I, = [ank, dni+1]) are the intervals such that k/nel,; for all keJ,, I=
Ukes, Ink and |1, x| denotes the measure of .

Recently, Zeng and Piriou [8,9] studied some approximation properties of the
special operators B, ,f and B, , f given by (2) and (3), related to the classical
Bernstein polynomials L, f = B, f. In particular, they gave estimates for the rate of
pointwise convergence of B, ,f(x) and B, ,f(x) for functions f of bounded
variation in the Jordan sense on I = [0, 1]. Some extensions and generalizations of
their results to a general class of operators (2) (with «> 1) can be found in [7]. In this
paper we present general estimates for the rate of convergence of L) , f(x) in the case
where f'e M(I) and f possesses the one-sided limits f(x+), f(x—) at a fixed point
xelnt /. In our estimates we use the auxiliary function g,, continuous at x, defined
for tel by

f) —f(x+) if t>x,
gx(1) =<0 if 1=x, (4)
f(t) —f(x—) if t<x,

and the so-called modulus of variation v (gy; Y), ke Ny, of this function on some
intervals Y =/I. The modulus of variation of a function was first introduced by
Lagrange [5]. Some interesting properties of this modulus and its application in the
theory of Fourier series were investigated in the papers of Chanturiya (see e.g. [1]).
The modulus of variation of a function g on an interval Y = [¢,d] is defined as
follows: if k = 0 then vy(g; Y) = 0; if ke N then

k
5 (g; ) = vilgi o, d) = sup{z l9(1) g(ri>|},
i=1
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the supremum being taken over all systems [, of k non-overlapping intervals (¢, ;)
contained in Y. Clearly, vk(g; Y) <vir1(g; Y) for all ke Ny and vi(g; Z) <vi(g; Y) for
any interval Zc Y. If ge BV, (Y),p>1, i.e. if g is of bounded pth power variation on
Y, then for every ke N,

Uk(Q? Y)Skl_l/pr(g; Y)7 (5)

where V,(g; Y) denotes the total pth power variation of g on Y, defined as the upper

bound of the set of numbers (Z;|g(u;) — g(s_/)|1’)l/” over all finite systems of non-
overlapping intervals (u;,s;)c Y.
In order to formulate the main results, we introduce the moments

,U;J,(X) = L;,l( ! ‘/)(x)

= 3 Uil past) | |

ked,

where ne N, y>0, and we assume that uj;_’.',(x) < oo (with some y occurring below).
We restrict ourselves only to the points xel at which

*(x)>0 and B(x) = > [j —xI’p1 ;(x)< (6)

Jjei
(We adopt the convention that X%- = 0.)

Theorem 1. Let f'e M(I) and let at a fixed point xelInt I the assumptions (6) hold and
the one-sided limits f(x+), f(x—) exist. Then

Ly, . f(x) =277 f(x+) = (1 = 27%) f(x—)]
<2((1+ 8ni <mz: l; (9x; Y, ]/\/_)) Um(x; Y‘C(l))>

+ 20,03 (o (9 1) +Au%|f(X+) /)

Sfor n=zng(a,x), where m=[/n], Yi(h) =[x —hx+holn(e,x)=1 if a=1,
no(o,%) = (4B(x) /()" if <<,

2@

n

B OC,LL;:J(X) lfOC?L
W=\ 2 ) if 0<a<t,
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3(1) = 0 if neither of the points x — 1,x + 1 belongs to Int1, 9.(1) =1 otherwise,
A, = max{l,a}, and

_ 3B !
Alx) = 263 (x) - 2n0(x)

: 8)

Note that for many known operators there exist a non-negative function v, and a
positive integer n(a) such that

A () <, ()" for all xel, n>n(a). ®

Theorem 2. Let fe BV,(I), p=1, and let condition (9) hold. Then for every xeInt I at
which (6) is satisfied and for every n=max{ng(x, x),n(o)} we have

Ly o f (6) = 27 £ (x4) = (1= 27%) f (x|
_ 1601+ 8y, (x))
ST ,;w%)“‘/” Ploss T1/VR)

4 20,000Vl 1)+ s S| ) = (-]

where Yy(h),no(o, x), 9(1), Ay, A(x) are as in Theorem 1.

If fe BV\(I), where I = [0, 1], and if L} , f = B, ,f are the Bézier-Kantorovich
modifications of the Bernstein polynomials, then our Theorem 2 (with p=1) is
equivalent to the corresponding results given in [8,9]. Note that the estimate for
B}, f following from our Theorem 2 has a slightly different form from that of [9],

but in case a>1 it holds for all ne N (cf. [9, Theorem 2]).

2. Preliminary results

We first recall that Q;“,i(x) >0 and

Z Q,(ﬁ(x) = < Z Pn,_/(x)> =1 for all a>0.

keld, jedn

In view of the obvious inequality |u* — v*|<o|u — v| (0<u,v<1, a>1) we have

0 () <t(gnk(¥) = g1 (¥)) = apa(x) i 2>1. (10)
Arguing similarly to the proof of Lemma 2 in [8] one can easily verify that
ok () <O (x)<p?y(x) if O<a<l. (11)

Now, let us represent operator (3) in the form

L,.f /f HHY (x,1) dt, (12)
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where

HP(x,0) = 3 Ll ™ 0% (x) 7, (1)

ked,

and y,,, are the characteristic functions of the intervals [, .

Lemma 1. Let x,s€l. If s<x, then
(%) Ar o
H (x, 1) di< — 25 i, (v), (13)
tel t<s S

where A, = max{l,a}. If x<s, then

/ HY () di<—2 (s (), (14)
telt>s (s —x) -

where B, = o and y =1 ifa=1; B, =2"%and y = 1 /o if 0<a<]1.

Proof. Clearly, in case «>1 and s<Xx we have

1

/ H (x, 1) di < 72/ (x = 1) HP (x,1) di < —— i} 5(x),
t<s (X - S) ISs ( A’

X —)

by (10). The same bound remains valid for the integral ft% H,S‘“) (x,t) dt with a>1
and x<s.

Consider now the case where 0 <a < 1. Choose the integer /€ J, such that sel,; =
[@n1, anj+1]. Then, s = a,; + ¢|1,;| with some ¢€[0, 1] and, if s<ux,

-1
| o d=Y 0w +0f) ()
1<s =0 :
=1—-(1-¢)q,,(x)— 84}9;,1“(3‘)
(1 - E)QH,I(X) — &qn1+1 (X)

N
|

=3 o) + 60 (x) = / HO(x, 1) dr

' t<s

S s? f2(%)-
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This completes the proof of (13). If s> x, then in view of (11),

/ HE (3, 1) dt = 00l M (anss )+ 3 0%(x)

k=I1+1

0 ()t (@n s — 5) + ( 3 pn,k<x>>
k=1+1
< Pa(x) + ( > Pn,k(x)> <2 <Z pn,,k(x)>

k>=1+1 k=1
21705 - 2 "
< D) o] / 0= P de
(S - 'x)2 (kZZ[ 111.k
21—0: i
< 5 (22 (X))"

(s =x)

Hence inequality (14) follows. [

Lemma 2. Let xel and let I.(h) =[x+ h,x]nI if h<0, L:(h) =[x, x+h]nI if
h>0. Suppose that g is a function bounded and measurable on I.(h) and that g(x) = 0.
Then for all ne N we have

/ g(0)HP (x,1) dt
I(h)

m—1
<<1+ﬁ . )( ]13 (g: i/ /) + <g,1<h>>>,

where m = [\/n] and /ln“ (x) is defined by (7).

Proof. Restricting the proof to />0, we define the points ¢ = x + jh/\/n for j =
1,2, ...,r, where r is the largest integer such that 7, €Int I,(h) and we denote by 7,
the right end point of the interval I(%). Let T; == [x, ;] for j=1,2,...,r + 1. Then

tjt1

) (x = ' (x, ) (x,
/Mh)g(t)Hn (x, 1) dr / g()H tdt+z H' (x, 1) dt

r

£y / " (o) - o) P .0

Jj=1 7l
=K; + K, + K3, say.

Clearly,
1
Kil< / 9(t) — g HP (x, ) di <o (g: T).
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Assume r>2. By the Abel transformation and (14) we have

Iry

[ r—1
K| < Ig(tl)l/ HY (x,0)di+ ) |g(t11) = g(5)] H (x, 1) dt
N j=1

L1

r—1

< nh™2 37 (x) (g(tl)l + > lg(t1) = 91 (G + 1)_2>,
J=1

where 1% (x) = ot 5 (x) if o> 1, 4% (x) = 21““‘(;1}’;12/‘1(30)‘2 if 0<o<l.

Using again the Abel transformation and applying some elementary properties of
the modulus of variation we obtain

r—1
|Ka| < nh~22) () (g(tl) — g™+ lg(ti1) — 9(1))] rlz
=

Further, in view of (14),

2 (a 1
|Ks| <nh™27 )(X>Zj—201(g; Ly tit1)-
=

Applying the Abel transformation gives
2, o 1
o122 (637 ) + o)
=2

If r=2, r<m, then

1 LN | 1
r_zvr(g; Tr+l) <4 Zl _3Uj(ga ]}) + va(g; Tm+l)
J=r+

and consequently,
5 m—1 1 1
K> + K3| <8nh 22" (x) ; 7 vi(g; T;) + s Un(9; Tny1) |-

Collecting the results and observing that 7; = I,.(jh/+/n) we get the desired estimate
for h>0,m>=2. A trivial verification shows that it also holds for m = 1.
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If <0 then the proof runs analogously. In this case we use inequality (13) instead
of (14) and we observe that

12 (X) < (1555, (0)* if 0<a<1,

so that right-hand side of (13) can be replaced by i,(f‘> (x)/(x—s)* O

Lemma 3. Let assumptions (6) hold at a fixed xelInt I and let

22— 1 if t>x,
sgn (1) =4 0 if t=x, (15)
-1 if t<x.

Then

2%4, [ 3th(x) 1
Lt sgn'®(x)| <= +
oo OIS <03(X) 270 (x)
for nzng(o,x), where A, =max{l,a}, 0<t<0.8, ny(o,x) =1 if a=1 and

no(a, x) = (4B(x)/a*(x))* if 0<o<1.

Proof. Choose /eJ, such that xe [anl,an 1+1) = In)\{a@n+1}. Tt is clear that

Ln o Sgn( ) Z an Z Qiz“li(x)

k>1 k<l
+ a7 O () (27 = 1) (ann — X) — (x — @up))

=23 00(x) — 1+ 220 (X)Lt~ (g1 — ),

k>1

<\ S )

1° Assume that o> 1. Applying (10) and the inequality |u* — v*|<oju — v| (4, v=0)

we get

In view of the Berry—Esséen Theorem [2, p. 515]; [3, p. 93],

X 2 u M
f”x;ﬂﬂﬁpn} \/_/ exp(=u/2) d S Vo (x)

i.e.

|L sgn +27Q ()

D pus)

j>1

1L, , sgn'® ()| <2 (
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forallneN,te R, where 0 <7 <0.8. From this and from the assumption k/ne I, for
all ke N, we have

anj

j>1

Z (%) 7% < B(x)

2 < Via () (16)

and

2tB(x)
Pui(x ;pn] j; P j(x) < \/“O_'; (x) \/-—/ exp(— 2/2)

where s; = (I — 1 — nx)/a(x)y/n, s2 = (I — nx)/a(x)/n. Consequently,

2tp(x)
3

1
+ for all neN.
Vnad(x)  \/2mne(x)

Pni (x) <

Thus, the desired estimate for a>1 is established.
2° Consider now the case 0 <o < 1. By the mean value theorem,

K;mmﬂ L S o)

j>1
where &, (x) lies between § and X, p,, ;(x). In view of (16) we have Z;. p, j(x) >}
for all n>no(x) = (4(x)/0°(x))*. Hence (&,,(x))" "' <4'~* for n>ny(x) and

o) L W
‘(; p’h./( )) Do < ﬁ03(x)

1
énl “

since o4!=*< 1. Further

OF)(x) = 2y (x) — 1 (%) = a(Lus (%)) P (),

where ¢y 141(x) <, (x) <gni(x). But, in view of (16),

G (X) > guisr (x Z Dn, j(X >f for n>no(x).
j=l+1
Hence
27f(x) n 1
~V/ned(x) 2nno(x)

Collecting the results we get our estimate for O<o<1, and the proof is
complete. [

Q,(f)( ) <o, (x) < for n>ny(x).
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3. Proofs of theorems and remarks

Proof of Theorem 1. It is easy to see that under the assumptions of Theorem 1, the
function f can be represented in the form

S(@0) =27 f(x4) + (1= 27 f(x=) + gx(1) + 277(f (x+) = f(x=)) sgn (1)
+ () =277 () = (1= 279) f (x=))0x(0),

where gv,sgngc) are defined by (4) and (15), respectively, and 0.(z) =0 if

t#x,0x(x) =1 (see [9, p. 381]). Consequently,
Lo f(x) =27 f(x+) = (1 = 27%) f(x—)
= L; ,0:(x) + 27(f (x+) = f(x=))L;, , senl) (x). (17)

Using the representation (12) we can write

Ly ,gx(x (/ / )g\ HHY (x,1) dz+/ g () H'Y (x, 1) dt,
R.(1)

where I,(—1)=[x—1,x]nI, I,(1)=[x,x+1]nI and R.(1)=1I\[x—1,x+1].
Clearly, R.(1) is empty if neither of the points x — 1,x+ 1 belongs to I. The
estimates for the first two integrals are given in Lemma 2, in which we put g = ¢, and
h = —1 or h =1, respectively. Using the obvious inequality

Uj(gx§ Ix(_u)) + Uj(g.\';I.vc(u)) <2Uj(gx§ Yx(u))a

where u>0, Y. (1) = [x — u,x + u]n I, we easily get the estimate for the sum of these
two integrals. Since |g.(?)| = |gx(2) — gx(x)| <vi(gy; 1), we have

<229(x)v1 (g3 1),

/ g () H™ (x, 1) dt
R.(1)

by Lemma 1. Thus the estimate for [L; ,g.(x)| is established. Now, it is enough to

apply identity (17) and the estimate of |Lj, %sgni)( )| given in Lemma 3, and the

proof is complete. [

Proof of Theorem 2. If f'e BV, (), then in view of (5),

§

—1
Sl VvV < Z o Voo Vo)
1

22+1/p mim
< W /1/\/5 2+1/p Vp(gx; Yi(1))dt

J
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21+1/p n 1
< o / o Dl V(1R d

2l+1/p n 1
<
(V)" = (Vi)

Vylgs: Ya(1/VE))

and
1 ' 1 ' 21+1/p
va(gx’ Yx(l))<m V(g YX(IDgW

Moreover, vi(gx;1)<V,(gx;I). Estimate given in Theorem 2 follows now from
Theorem 1 and assumption (9), immediately. [l

Vp(gx; Yi(1)).

Remark 1. Let us observe that

m—1 m—1

Zjl;vj(g,x, (/) < 2]12 (9x: Yx(j/v/n)
j=1 j=1
/i
\jﬁ /1/\/_ Ul gm Yx(t)) dt
<30 2 nlas K(1/0)
=1

and that v;(gy; Y<(1/k)) is the oscillation of the function g, on the interval
Y:(1/k) =[x — 1/k,x+ 1/k]n1. Consequently, in view of the continuity of g, at x
we have

m

lim % > vilgy Yu(1/k)) =

k=1

Also

n

Yi(1/Vk)) =

. 1 1
nlin; (\/ﬁ)l+l/p Z (\/E)l_l/p ])(g)ﬁ

Hence, under assumption (9) the right-hand sides of the inequalities given in
Theorems 1 and 2 converge to 0 as n— 0.

Remark 2. A result similar to that of Theorem 2 for functions f of bounded
®-variation in the Young sense on I can be obtained too (cf. [6, Corollary 1]).
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4. An example

Our general results can be applied to concrete operators of the form (3) generated
by the known discrete Feller operators (1) such as the Bernstein polynomials, the
Szasz—Mirakyan operators or the Baskakov ones. It suffices to find the correspond-
ing values of the variance ¢?(x) and all parameters in conditions (6) and (9). As an
example we consider only the kantorovichians of the Baskakov—Bézier operators.
Namely, let

»© n+j—1 . o
Zf ]/npnj pn,j(x): ( . )x‘/(l""'x) "
J=0 J

for xel =[0,0) be the classical Baskakov operators. Denote by U, , f the
corresponding operators of the form (3), in which J, = Ny, Lk = [k/n, (k+
1)/n], |Lix| = 1/n for all ke Ny. As is known, in this case ¢*(x) = x(1 + x) and

o o 12 /o 1/2
Bx) =3 1= xprs(x)< ( <j—x>2p1,,-<x>> (Z(j—X)4p1,j(x)>
j=0

=0 7=0
= x(1 4 x)(1 4 9x + 9x%) > <3x(1 + x)%.

Therefore conditions (6) hold at every xe (0, co) and for expression (8) we have the
estimate: A(x)<8+/(1 + x)/x. Further, it is easy to verify that
. Cx(14x) 1 1+x(1+x)
Hyo(x) = n + 3n2\ n
1° Let o> 1. Then condition (9) is satisfied with ,(x) = a(1 + x + x?) for all x>0
and n>n(x), where n(a) = 1. Consequently, for operators U, , /" one can deduce

estimates as in Theorems 1 and 2. We will formulate only the result following from
Theorem 2.

for all neN.

Corollary 1. If fe BV,(I), where I = [0, c0),p>1, and if =1 then for all x>0 and
neN we have
Uy, oS (x) =27 f(x4) = (1= 27%) f(x—)

16(1+8oc(1+x+x))i(\//;)111/p (95 Ya(1/VK))
k=1

< (\/—)l+l/p
+WVP(%;1)+§% X ) Gl

where Y, (1/Vk) = [x — 1/vVk,x + 1/Vk]n[0, ).

2° Let 0<a< 1. In order to verify condition (9), we need to estimate the function
(e /“(x))‘“. Write / = 2 /o and denote by [/] the greatest integer not exceeding /. As in
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[8, Lemma 6] choose the numbers:

2[1] Al 2

Saiea—r PTiy Ty STy vl

Clearly, />2, p>1,p'>1,1/p+1/p’ =1 and [ = r + s. Applying twice the Holder
inequality (first for integrals, next for sums) we obtain

1/p 1/p’
/ It — x| dt< / |t — x|"” dt /|t_x|f"’dz
[njc In.k [n,k

and then

i () < (1152 (0)) 72 1, ()7

Since ve N, we have

(k1) ) 1 & (v
nal ‘”Z”"" i ”‘x)z"’zmz(;( )

k/n l

where

=3 ) = nx)’
=0

From the representation of 7),;(x) given in [4, Corollary 3.7] it may be concluded
that
c(v) - j
(14 x) E (x(1 +x))’ for all xel,n>1,
n’ =

MZ,ZV (X) <

where ¢(v) is a positive constant depending only on v. Therefore

v

1/p
Mn/( x)< c(v)(1+ x(1 —l—x))l/!’ <(1 +x) Z (x(1 +x))j> (/o))
=0
<) S (142
7=0

This means that A" (x) = 21’“(,u,’;’2/m(x))“<lﬁa(x)n*1 for all ne N, where
R/d+1 A *
Y, (x) = K(Of)( > X +X)’“> ;
=0

and k(o) is a positive constant depending only on a. Consequently, if 0 <o <1, then
estimates given in Theorems 1 and 2 hold for operators U, , f/ with the above values

of 2% (x),y,(x) and with n(a) = 1, no(x, x) <144(1 4 x)/x, A(x)<8/(1 + x)/x.
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